IRI Symposium on Changing Paradigms in Science and Technology Policy

Presentation of Raymond G. Kammer Director, National Institute of Standards and Technology

March 16-17, 1998 Washington, DC

THE OLD PARADIGM

Vannevar Bush model: Scientific research intrinsically valuable; can—and should—absorb all available resources.

Historical context:

- The Economy: Post-war recovery; re-tooling of the military-industrial base; mass production manufacturing
- Science and Technology: Revolutionary impact of science on national security; pre-eminence of physical sciences; government R&D predominates
- Geopolitics: Managing the military balance of power; defense technologies critical

CHANGING PARADIGMS

No consensus; no apparent model for technology policy.

Fundamentally different context for science and technology policy:

- The Economy: Relatively stable growth; globalization; transition to a knowledge-based economy
- Science and Technology: Rapid change; multidisciplinary science and technology at forefront; industry R&D predominates
- Geopolitics: Post Cold War stability; technological and economic competition in a global era

TRANSITION TO A KNOWLEGE-BASED ECONOMY

Shift in output and distribution of R&D from manufacturing to non-manufacturing sectors...

	1970	1980	1990	1996
Composition of output (percent of GDP by industry group)	Mfg.: 24.1%	Mfg.: 21.0%	Mfg.: 18.0%	Mfg.: 17.4%
	Services: 11.6%	Services: 13.6%	Services: 18.4%	Services: 20.2%
	FIRE: 14.1%	FIRE: 15.0%	FIRE: 17.8%	FIRE:19.0%
Distribution of R&D (percent of total industry R&D)	Mfg.: 97.8	Mfg.: 96.6	Mfg.: 80.0	Mfg.:75.0
	Non-mfg.: 2.2	Non-mfg.: 3.4	Non-mfg.: 20.0	Non-mfg.:25.0

Sources: BEA, NSF. "FIRE" = finance, insurance, and real estate.

...and increasing interdependence between product and service functions within many manufacturing firms.

TRANSITION TO A KNOWLEGE-BASED ECONOMY

Rapid expansion of investment in information technology equipment.

	1970	1980	1990	1997
Investment in Information Processing Equipment (share of total fixed producers durable equipment)	\$10.7 billion	\$45.4 billion	\$116.2 billion	\$305.2 billion
	(7%)	(17%)	(30%)	(46%)

Sources: BEA. Data expressed in constant 1992 dollars.

The total cost of using IT in service firms is about five times the level of expenditures on IT equipment. Key role for assimilation/utilization practices. **Changing industry needs**:

- Generic technologies (controlling large networks, distributed databases, data management, systems management and integration)
- Improved infrastructure capacity and services (conformance testing for standards, next-generation Internet protocols, quality of service measurement tools)

TRANSITION FROM GOVERNMENT TO INDUSTRIAL R&D

Tremendous change in the sources of R&D funding.

Distribution of R&D Funding in the United States, by Source

RESTRUCTURING OF INDUSTRIAL R&D

Industry R&D spending has been growing strongly. But competition, restructuring have changed the composition of R&D.

- Shorter time horizons: Spending on "directed basic research" growing more slowly than total industry R&D
- Restructuring or elimination of central labs; R&D increasingly centered on business units
- Relatively high hurdle rates for R&D investments

An effective business strategy. But suggests under-investment in next-generation technologies.

A COMPLEX, RAPIDLY CHANGING S&T ENTERPRISE

Key features of contemporary S&T enterprise:

- Multidisciplinary
- Partnerships
- IT intensive
- Rapid change

One result: Changing demands on the Nation's science and technology infrastructure

THE POLICY RESPONSE?

R&D budget trends: Decrease defense, increase health, most others held flat.

Federal R&D Authority, by Budget Function

THE POLICY RESPONSE?

International comparisons. Distribution of U.S. Federal R&D spending is unlike any other advanced industrial country.

Government R&D Support, by Country and by Socioeconomic Objective

WHAT IS THE "RIGHT" LEVEL OF INVESTMENT?

No answer, in the abstract

Focus on the process: collaborate to identify, develop, and disseminate high-leverage technologies and services that the market cannot supply independently

For example: Guidelines for NIST Measurement and Standards Laboratories:

- 1. Assess industry needs
- 2. Assess corresponding NIST competencies
- 3. Benchmark to best in world
- 4. Evaluate performance

NIST APPROACH WORKS

Example: Single-Crystal Critical Dimension Reference Materials for Next Generation Lithography

- 1. SIA Roadmap: Need metrology advances to calibrate microchip measuring tools; 100 nanometers by 2006
- 2. NIST collaboration with Sandia produces single-crystal silicon measurement artifact that allows calibration of different measurement tools to assess features at 100 nanometers
- 3. Expect development of traceable-to-NIST SRM. Will support future manufacture of faster, more powerful microchips

IMPLICATIONS FOR TECHNOLOGY POLICY?

Need: Consensus on underlying principles and policy rationale for allocating scarce resources to areas with the greatest potential returns to the economy and society

A starting point? Six principles proposed by Branscomb and Keller:

- 1. Encourage private innovation
- 2. Emphasize basic technology research
- 3. Facilitate access to new and old technologies
- 4. Use all policy tools, not just R&D
- 5. Leverage globalization of innovation
- 6. Improve government effectiveness in policy development